Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-(1,3-Dioxoisoindolin-2-yl)ethyl 4-methylbenzenesulfonate

Mark Daniel Bartholomä, Wayne Ouellette and Jon Zubieta*

Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA Correspondence e-mail: jazubiet@syr.edu

Received 6 November 2008; accepted 14 November 2008
Key indicators: single-crystal X-ray study; $T=90 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA ; R$ factor $=$ $0.052 ; w R$ factor $=0.122$; data-to-parameter ratio $=17.7$.

In the title molecule, $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}$, the dihedral angle between the essentially planar atoms of the tosyl moiety (the S atom and the seven tolyl C atoms) and the phthalimide moiety is $6.089(3)^{\circ}$. The molecule is folded about the ethylene bridge, adopting a staggered conformation such that the benzene ring of the tosyl group and the five-membered ring of the phthalimide moiety have a face-to-face orientation with a centroid-to-centroid separation of 3.7454 (12) A. The crystal structure is stabilized by weak intermolecular $\pi-\pi$ interactions between symmetry-related five-membered rings of the phthalimide groups, with a centroid-to-centroid distance of 3.3867 (11) A. The compound is used for the attachment of a suitable chelate functionality for radiolabeling purposes.

Related literature

For general background, see: Eriksson et al. (2002); Arner \& Eriksson (1995); Bello (1974); Wei et al. (2005); Welin et al. (2004). For reference bond distances, see: Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}$
$M_{r}=345.36$
Monoclinic, $C 2 / \mathrm{c}$
$a=13.6817$ (13) A
$b=12.5642$ (12) \AA
$c=19.3194$ (19) \AA
$\beta=107.121$ (2) ${ }^{\circ}$

Data collection

Bruker APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Brucker, 2007)
$T_{\text {min }}=0.913, T_{\text {max }}=0.934$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.122$
$S=1.25$
3865 reflections
$V=3173.8(5) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=90$ (2) K
$0.40 \times 0.35 \times 0.30 \mathrm{~mm}$

16184 measured reflections 3865 independent reflections 3773 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$

218 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.48 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.41 \mathrm{e}^{\AA^{-3}}$

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors gratefully acknowledge the support of the National Science Foundation (grant No. CHE-0604527) and Molecular Insight Pharmaceuticals Inc.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2734).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Arner, E. S. J. \& Eriksson, S. (1995). Pharmacol. Ther. 67, 155-186.
Bello, L. J. (1974). Exp. Cell Res. 89, 263-274.
Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Eriksson, S., Munch-Petersen, B., Johansson, K. \& Eklund, H. (2002). Cell. Mol. Life Sci. 59, 1327-1346.
Palmer, D. (2006). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wei, L., Babich, J., Eckelman, W. C. \& Zubieta, J. (2005). Inorg. Chem. 44, 2198-2209.
Welin, M., Kosinska, U., Mikkelsen, N.-E., Carnrot, C., Zhu, C., Wang, L., Eriksson, S., Munch-Petersen, B. \& Eklund, H. (2004). Proc. Natl Acad. Sci. USA 101, 17970-17975.

supplementary materials

Acta Cryst. (2008). E64, o2395 [doi:10.1107/S1600536808037951]

2-(1,3-Dioxoisoindolin-2-yl)ethyl 4-methylbenzenesulfonate

M. D. Bartholomä, W. Ouellette and J. Zubieta

Comment

Nucleosides and nucleoside derivatives have become a target of interest as potential inhibitors and probes for tumor cell proliferation. One major targeted enzyme is the human cytosolic thymidine kinase (hTK-1), an enzyme of the pyrimidine salvage pathway which catalyzes the phosphorylation of nucleosides to their corresponding 5'-monophosphates (Welin et al., 2004). The hTK-1 activity is closely related to DNA synthesis and the corresponding monophosphates are important precursors for DNA incorporation. Interestingly, hTK-1 shows a dramatically increased activity in proliferating cells compared to quiescent cells which makes it an attractive target for radiolabeling applications (Bello, 1974). Nucleosides are taken up by proliferating cells through facilitated diffusion and get converted to their corresponding monophosphates by hTK-1. The cellular efflux of the corresponding monophosphate is hindered due to the negatively charged phosphate residue leading to a intracellular trapping of the corresponding nucleoside (Arner \& Eriksson, 1995). Thus, a radiolabeled nucleoside analog could be used as probe for tumor cell proliferation since the trapping results in an accumulation in tissue with elevated hTK-1 activity. Much effort has been put in the development of radiolabeled nucleoside analogs but the narrow substrate specifity of hTK-1 remains hereby a problem which still has to be solved (Eriksson et al., 2002). The literature on the interaction of thymidine derivatives with hTK-1 is not totally unambiguous about the effects of various substitutions. Major modifications of thymidine or uridine, respectively, can result in inactivity. On the other hand, several derivatives modified at the ribose and the base site are reported which retain their activity. Therefore, we built up a library of several thymidine and uridine analogs modified at different positions of the sugar and base moiety to investigate the effects of various substitutions. 2-(1,3-dioxoisoindolin-2-yl)ethyl 4-methylbenzenesulfonate (Tosylethylphthalimide) is part of a series of tosylalkylphthalimide derivatives recently synthesized in our group. The series was prepared to expand the use of our SAAC concept (single amino acid chelate) on nucleosides for radioimaging and radiotherapeutic purposes (Bartholomä et al., unpublished results). The tosylalkylphthalimide derivatives are precursors for the attachment of a SAAC chelate at the $\mathrm{N}-3$ and C-5 position of the base moiety of thymidine. The SAAC chelate allows thereby the radiolabeling of thymidine and uridine derivatives by the coordination of the $\left[M(\mathrm{CO})_{3}\right]^{+}$core $\left(M={ }^{186 / 188} \mathrm{Re},{ }^{99 m} \mathrm{Tc}\right)$ (Wei et al., 2005). ${ }^{99 m} \mathrm{Tc}$ with its ideal decay properties, low cost and good availability can be used for imaging purposes while the corresponding rhenium complexes would be the therapeutic counterparts.

The title molecule shows a folded structure where the phthalimide residue and the tosyl moiety have a face-to-face orientation (see Fig. 1). Thereby, inter- as well as intramolecular aromatic interactions are observed. The intramolecular interactions are illustrated by the centroid-to-centroid distance between the five-membered ring of the phthalimide moiety and the benzene ring of the tosyl residue with $\mathrm{Cg} 1 \cdots \mathrm{Cg} 2=3.7454$ (3) \AA, where Cg 1 is the centroid of the ring atoms $\mathrm{N} 1 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 14 / \mathrm{C} 15$ and Cg 2 is the centroid of the ring atoms $\mathrm{C} 1-\mathrm{C} 7$. Weak intermolecular interactions occur between two five-membered rings of the phthalimide moiety with a $\mathrm{Cg} 1 \cdots \mathrm{Cg} 1^{\mathrm{i}}$ distance of 3.3867 (3) \AA [symmetry code: (i) -x , y, $3 / 2-z]$. The ethylene bridge adopts a low-energy staggered conformation with the torsion angle $\mathrm{N} 1-\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 3=$ 61.829 (5) ${ }^{\circ}$. Obviously, this arrangement allows a more dense crystal packing as the fully planar conformation (see Fig. 2). The phthalimide (N1/O4/O5/C8-C16) and the tosyl (S1/C1-C7) moiety are essentially planar and have an approximately

supplementary materials

parallel orientation with respect to each other giving a dihedral angle of $6.089(3)^{\circ}$. All bond lengths fall in the expected ranges (Allen et al., 1987).

Experimental

8.00 g (41.84 mmol$) \mathrm{N}$-(2-Hydroxyethyl)phthalimide were dissolved in 80 ml anhydrous pyridine under an inert atmosphere followed by a dropwise addition of 11.97 g ($62.76 \mathrm{mmol}, 1.5$ equiv.) p-Toluenesulfonyl chloride in 80 ml anhydrous pyridine. After the addition was completed, the reaction mixture was stirred for additional 16 h . The reaction was quenched by the addition of ice. The crude reaction mixture was poured into an ice/water mixture resulting in a white precipitate which was extracted with $3 \times 80 \mathrm{ml}$ chloroform. The combined organic layers were washed with saturated sodium bicarbonate solution $(150 \mathrm{ml})$ and twice with water, dried over anhydrous MgSO_{4}, and finally evaporated to dryness. The product was obtained in good yields as a colourless amorphous powder ($12.99 \mathrm{~g}, 90 \%$). Single crystals suitable for X-ray diffraction were obtained by dissolving the product in an ethylacetate/methanol mixture $20: 1$ and storing the solution at 273 K for several days. ${ }^{1} \mathrm{H}$ NMR (d6-DMSO): $\delta=2.19(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{t}, \mathrm{J}=4.91 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{t}, \mathrm{J}=4.95 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=7.98 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}$, $\mathrm{J}=8.25 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.83(\mathrm{~m}, 4 \mathrm{H})$ p.p.m.. IR: $v=3466,3063,2970,2942,1773,1756,1711,1614,1594,1463,1428$, $1392,1355,1320,1190,176,1119,1093,1041,992,913,859,811,796,768,722,704,693,668,578,552,526,493 \mathrm{~cm}^{-1}$.

Refinement

H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and included in the riding-model approximation with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ or $1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms.

Figures

Fig. 1. Perspective view of (I), with the atom numbering scheme and thermal ellipsoids drawn at 50\% probability level.

2-(1,3-Dioxoisoindolin-2-yl)ethyl 4-methylbenzenesulfonate

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}$
$F_{000}=1440$
$M_{r}=345.36$
Monoclinic, C2/c
$D_{\mathrm{x}}=1.446 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$

Hall symbol: -C2yc
$a=13.6817$ (13) \AA
$b=12.5642$ (12) \AA
$c=19.3194(19) \AA$
$\beta=107.121(2)^{\circ}$
$V=3173.8(5) \AA^{3}$
$Z=8$

Data collection

Bruker APEX CCD area-detector diffractometer
Monochromator: graphite
Detector resolution: 512 pixels mm^{-1}
$T=90$ (2) K
φ and ω scans
Absorption correction: multi-scan (SADABS in SHELXL97; Sheldrick, 2008)
$T_{\text {min }}=0.913, T_{\text {max }}=0.934$
16184 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.122$
$S=1.25$
3865 reflections
218 parameters

Cell parameters from 9534 reflections
$\theta=2.2-28.3^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=90$ (2) K
Block, colourless
$0.40 \times 0.35 \times 0.30 \mathrm{~mm}$

3865 independent reflections
3773 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=28.1^{\circ}$
$\theta_{\text {min }}=2.2^{\circ}$
$h=-18 \rightarrow 18$
$k=-16 \rightarrow 16$
$l=-25 \rightarrow 25$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0413 P)^{2}+6.2623 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.48$ e \AA^{-3}
$\Delta \rho_{\min }=-0.41 \mathrm{e} \AA^{-3}$
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	0.24768 (3)	-0.05689 (4)	1.04905 (2)	0.01844 (13)
O1	0.27012 (11)	-0.16681 (11)	1.06516 (7)	0.0245 (3)
O2	0.26255 (12)	0.01842 (12)	1.10672 (7)	0.0269 (3)
O3	0.13136 (10)	-0.04377 (10)	1.00548 (7)	0.0195 (3)
O4	0.12124 (10)	-0.09920 (11)	0.78928 (7)	0.0214 (3)
O5	0.01573 (11)	0.16581 (11)	0.91348 (8)	0.0270 (3)
N1	0.05468 (11)	0.01454 (12)	0.85773 (8)	0.0179 (3)
C1	0.31279 (13)	-0.01266 (16)	0.98842 (10)	0.0193 (4)
C2	0.35460 (15)	-0.08611 (17)	0.95184 (11)	0.0243 (4)
H2	0.3486	-0.1603	0.9592	0.029*
C3	0.40571 (15)	-0.04904 (19)	0.90397 (11)	0.0287 (4)
H3	0.4350	-0.0988	0.8788	0.034*
C4	0.41464 (15)	0.0590 (2)	0.89231 (11)	0.0294 (5)
C5	0.46884 (19)	0.0980 (2)	0.83979 (13)	0.0425 (6)
H5A	0.5003	0.0376	0.8223	0.064*
H5B	0.5220	0.1491	0.8641	0.064*
H5C	0.4196	0.1328	0.7987	0.064*
C6	0.37176 (16)	0.13104 (18)	0.93012 (12)	0.0286 (4)
H6	0.3773	0.2052	0.9226	0.034*
C7	0.32129 (15)	0.09635 (16)	0.97844 (11)	0.0236 (4)
H7	0.2930	0.1460	1.0043	0.028*
C8	0.10819 (13)	-0.01011 (15)	0.80845 (9)	0.0169 (3)
C9	0.14229 (13)	0.09383 (15)	0.78653 (9)	0.0180 (3)
C10	0.19546 (15)	0.11612 (16)	0.73773 (10)	0.0218 (4)
H10	0.2158	0.0612	0.7111	0.026*
C11	0.21815 (16)	0.22272 (17)	0.72909 (11)	0.0270 (4)
H11	0.2547	0.2410	0.6959	0.032*
C12	0.18807 (17)	0.30273 (17)	0.76836 (11)	0.0276 (4)
H12	0.2055	0.3745	0.7620	0.033*
C13	0.13283 (15)	0.27955 (16)	0.81683 (10)	0.0232 (4)
H13	0.1115	0.3341	0.8432	0.028*
C14	0.11061 (13)	0.17402 (15)	0.82475 (9)	0.0182 (3)
C15	0.05463 (14)	0.12411 (14)	0.87179 (10)	0.0186 (4)
C16	0.00646 (14)	-0.06579 (15)	0.89112 (10)	0.0191 (4)
H16A	-0.0302	-0.1175	0.8538	0.023*
H16B	-0.0443	-0.0312	0.9112	0.023*
C17	0.08415 (14)	-0.12402 (14)	0.95089 (10)	0.0191 (4)
H17A	0.0505	-0.1797	0.9720	0.023*
H17B	0.1364	-0.1581	0.9320	0.023*

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0222(2)$	$0.0191(2)$	$0.0151(2)$	$-0.00308(16)$	$0.00727(16)$	$-0.00143(16)$

sup-4

O1	0.0290 (7)	0.0227 (7)	0.0213 (7)	-0.0010 (6)	0.0067 (5)	0.0018 (5)
O2	0.0362 (8)	0.0282 (7)	0.0185 (6)	-0.0083 (6)	0.0113 (6)	-0.0065 (6)
O3	0.0209 (6)	0.0188 (6)	0.0209 (6)	-0.0023 (5)	0.0095 (5)	-0.0037 (5)
O4	0.0227 (7)	0.0198 (6)	0.0233 (6)	0.0022 (5)	0.0094 (5)	-0.0020 (5)
O5	0.0325 (8)	0.0237 (7)	0.0304 (7)	0.0001 (6)	0.0180 (6)	-0.0042 (6)
N1	0.0182 (7)	0.0181 (7)	0.0191 (7)	0.0008 (6)	0.0083 (6)	0.0005 (6)
C1	0.0169 (8)	0.0260 (9)	0.0151 (8)	-0.0037 (7)	0.0048 (6)	0.0001 (7)
C2	0.0222 (9)	0.0288 (10)	0.0223 (9)	-0.0010 (8)	0.0071 (7)	-0.0032 (8)
C3	0.0201 (9)	0.0450 (13)	0.0220 (9)	0.0003 (8)	0.0079 (7)	-0.0044 (9)
C4	0.0169 (9)	0.0493 (13)	0.0222 (9)	-0.0054 (8)	0.0061 (7)	0.0040 (9)
C5	0.0297 (11)	0.0686 (18)	0.0340 (12)	-0.0074 (11)	0.0167 (10)	0.0104 (12)
C6	0.0242 (10)	0.0316 (11)	0.0303 (10)	-0.0067 (8)	0.0085 (8)	0.0063 (8)
C7	0.0216 (9)	0.0248 (10)	0.0244 (9)	-0.0022 (7)	0.0069 (7)	-0.0003 (7)
C8	0.0137 (7)	0.0219 (9)	0.0150 (8)	0.0014 (6)	0.0042 (6)	0.0013 (6)
C9	0.0158 (8)	0.0202 (8)	0.0165 (8)	-0.0012 (6)	0.0026 (6)	-0.0005 (7)
C10	0.0225 (9)	0.0267 (10)	0.0171 (8)	-0.0034 (7)	0.0071 (7)	-0.0018 (7)
C11	0.0300 (10)	0.0321 (11)	0.0207 (9)	-0.0095 (8)	0.0105 (8)	-0.0003 (8)
C12	0.0351 (11)	0.0227 (9)	0.0248 (9)	-0.0103 (8)	0.0084 (8)	-0.0005 (8)
C13	0.0269 (10)	0.0211 (9)	0.0212 (9)	-0.0037 (7)	0.0066 (7)	-0.0033 (7)
C14	0.0167 (8)	0.0212 (9)	0.0163 (8)	-0.0017 (7)	0.0045 (6)	-0.0019 (7)
C15	0.0181 (8)	0.0178 (8)	0.0197 (8)	0.0001 (6)	0.0053 (7)	-0.0015 (7)
C16	0.0182 (8)	0.0196 (8)	0.0216 (9)	-0.0026 (7)	0.0092 (7)	0.0002 (7)
C17	0.0219 (8)	0.0169 (8)	0.0190 (8)	-0.0040 (7)	0.0068 (7)	-0.0025 (7)

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{S} 1-\mathrm{O} 1$	$1.4290(15)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.4299(14)$
$\mathrm{S} 1-\mathrm{O} 3$	$1.5747(14)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.7574(18)$
$\mathrm{O} 3-\mathrm{C} 17$	$1.465(2)$
$\mathrm{O} 4-\mathrm{C} 8$	$1.209(2)$
$\mathrm{O} 5-\mathrm{C} 15$	$1.208(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.396(2)$
$\mathrm{N} 1-\mathrm{C} 15$	$1.403(2)$
$\mathrm{N} 1-\mathrm{C} 16$	$1.456(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.384(3)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.393(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.394(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{C} 3-\mathrm{C} 4$	$1.387(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 4-\mathrm{C} 6$	$1.396(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.504(3)$
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9800
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9800
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	0.9800
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$119.84(9)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 3$	$109.64(8)$

$\mathrm{C} 6-\mathrm{C} 7$	$1.385(3)$
$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{C} 7-\mathrm{H} 7$	0.9500
$\mathrm{C} 8-\mathrm{C} 9$	$1.489(3)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.379(3)$
$\mathrm{C} 9-\mathrm{C} 14$	$1.392(3)$
$\mathrm{C} 10-\mathrm{C} 11$	$1.396(3)$
$\mathrm{C} 10-\mathrm{H} 10$	0.9500
$\mathrm{C} 11-\mathrm{C} 12$	$1.393(3)$
$\mathrm{C} 11-\mathrm{H} 11$	0.9500
$\mathrm{C} 12-\mathrm{C} 13$	$1.396(3)$
$\mathrm{C} 12-\mathrm{H} 12$	0.9500
$\mathrm{C} 13-\mathrm{C} 14$	$1.379(3)$
$\mathrm{C} 13-\mathrm{H} 13$	0.9500
$\mathrm{C} 14-\mathrm{C} 15$	$1.488(2)$
$\mathrm{C} 16-\mathrm{C} 17$	$1.509(3)$
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	0.9900
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	0.9900
$\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$	0.9900
$\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B}$	0.9900
$\mathrm{O} 4-\mathrm{C} 8-\mathrm{C} 9$	
$\mathrm{~N} 1-\mathrm{C} 8-\mathrm{C} 9$	$129.65(17)$

O 2 -S1-O3	103.69 (8)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	109.41 (9)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	109.05 (9)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 1$	103.97 (8)
C17-O3-S1	118.36 (11)
C8-N1-C15	112.32 (15)
C8-N1-C16	123.05 (15)
C15-N1-C16	124.62 (15)
C2-C1-C7	121.40 (18)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	119.74 (15)
C7- $\mathrm{C} 1-\mathrm{S} 1$	118.85 (15)
C1-C2-C3	118.6 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.7
C3-C2-H2	120.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	121.3 (2)
C4-C3-H3	119.3
C2-C3-H3	119.3
C3-C4-C6	118.61 (19)
C3-C4-C5	120.9 (2)
C6-C4-C5	120.5 (2)
C4-C5-H5A	109.5
C4-C5-H5B	109.5
H5A-C5-H5B	109.5
C4-C5-H5C	109.5
H5A-C5- H 5 C	109.5
H5B-C5-H5C	109.5
C7-C6-C4	121.2 (2)
C7-C6-H6	119.4
C4-C6-H6	119.4
C6-C7- 1	118.77 (19)
C6-C7-H7	120.6
C1-C7-H7	120.6
O4-C8-N1	124.67 (17)
O1-S1-O3-C17	-38.67 (14)
O2-S1-O3-C17	-167.78 (12)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 3-\mathrm{C} 17$	78.22 (14)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	14.61 (18)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	147.43 (15)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	-102.45 (16)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 7$	-165.23 (15)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 7$	-32.41 (18)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 7$	77.71 (16)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.3 (3)
S1-C1-C2-C3	179.90 (15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.4 (3)
C2-C3-C4-C6	0.5 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-179.22 (19)
C3-C4-C6-C7	0.1 (3)
C5-C4-C6-C7	179.75 (19)

C10-C9-C14	121.68 (18)
C10-C9-C8	130.16 (17)
C14-C9-C8	108.15 (16)
C9-C10-C11	117.22 (18)
C9-C10-H10	121.4
C11-C10-H10	121.4
C12-C11-C10	121.04 (18)
C12-C11-H11	119.5
C10-C11-H11	119.5
C11-C12-C13	121.33 (19)
C11-C12-H12	119.3
C13-C12-H12	119.3
C14-C13-C12	117.10 (18)
C14-C13-H13	121.5
C12-C13-H13	121.5
C13-C14-C9	121.61 (17)
C13-C14-C15	130.00 (17)
C9-C14-C15	108.39 (16)
O5-C15-N1	125.45 (17)
O5-C15-C14	129.15 (17)
N1-C15-C14	105.40 (15)
N1-C16-C17	111.48 (15)
N1-C16-H16A	109.3
C17-C16-H16A	109.3
N1-C16-H16B	109.3
C17-C16-H16B	109.3
H16A-C16-H16B	108.0
O3-C17-C16	106.23 (14)
O3-C17-H17A	110.5
C16-C17-H17A	110.5
O3-C17-H17B	110.5
C16-C17-H17B	110.5
H17A-C17-H17B	108.7
O4-C8-C9-C14	-178.67 (18)
N1-C8-C9-C14	1.69 (19)
C14-C9-C10-C11	1.2 (3)
C8-C9-C10-C11	-179.09 (18)
C9-C10-C11-C12	0.0 (3)
C10-C11-C12-C13	-1.0 (3)
C11-C12-C13-C14	0.8 (3)
C12-C13-C14-C9	0.4 (3)
C12-C13-C14-C15	179.45 (18)
C10-C9-C14-C13	-1.4 (3)
C8-C9-C14-C13	178.79 (17)
C10-C9-C14-C15	179.32 (16)
C8-C9-C14-C15	-0.45 (19)
C8-N1-C15-O5	-178.31 (18)
C16-N1-C15-O5	0.7 (3)
C8-N1-C15-C14	2.1 (2)

sup-6

supplementary materials

$\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 1$	$-0.7(3)$	$\mathrm{C} 16-\mathrm{N} 1-\mathrm{C} 15-\mathrm{C} 14$	$-178.90(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 6$	$0.8(3)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{O} 5$	$0.3(3)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 6$	$-179.38(15)$	$\mathrm{C} 9-\mathrm{C} 14-\mathrm{C} 15-\mathrm{O} 5$	$179.49(19)$
$\mathrm{C} 15-\mathrm{N} 1-\mathrm{C} 8-\mathrm{O} 4$	$177.95(17)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{N} 1$	$179.90(19)$
$\mathrm{C} 16-\mathrm{N} 1-\mathrm{C} 8-\mathrm{O} 4$	$-1.1(3)$	$\mathrm{C} 9-\mathrm{C} 14-\mathrm{C} 15-\mathrm{N} 1$	$-0.95(19)$
$\mathrm{C} 15-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$-2.38(19)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 16-\mathrm{C} 17$	$76.8(2)$
$\mathrm{C} 16-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$178.62(15)$	$\mathrm{C} 15-\mathrm{N} 1-\mathrm{C} 16-\mathrm{C} 17$	$-102.06(19)$
$\mathrm{O} 4-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$1.6(3)$	$\mathrm{S} 1-\mathrm{O} 3-\mathrm{C} 17-\mathrm{C} 16$	$-146.02(12)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-178.05(18)$	$\mathrm{N} 1-\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 3$	$61.83(18)$

supplementary materials

Fig. 1

Fig. 2

